Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.302
Filtrar
1.
Hum Brain Mapp ; 45(6): e26643, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38664992

RESUMO

Coping with distracting inputs during goal-directed behavior is a common challenge, especially when stopping ongoing responses. The neural basis for this remains debated. Our study explores this using a conflict-modulation Stop Signal task, integrating group independent component analysis (group-ICA), multivariate pattern analysis (MVPA), and EEG source localization analysis. Consistent with previous findings, we show that stopping performance is better in congruent (nonconflicting) trials than in incongruent (conflicting) trials. Conflict effects in incongruent trials compromise stopping more due to the need for the reconfiguration of stimulus-response (S-R) mappings. These cognitive dynamics are reflected by four independent neural activity patterns (ICA), each coding representational content (MVPA). It is shown that each component was equally important in predicting behavioral outcomes. The data support an emerging idea that perception-action integration in action-stopping involves multiple independent neural activity patterns. One pattern relates to the precuneus (BA 7) and is involved in attention and early S-R processes. Of note, three other independent neural activity patterns were associated with the insular cortex (BA13) in distinct time windows. These patterns reflect a role in early attentional selection but also show the reiterated processing of representational content relevant for stopping in different S-R mapping contexts. Moreover, the insular cortex's role in automatic versus complex response selection in relation to stopping processes is shown. Overall, the insular cortex is depicted as a brain hub, crucial for response selection and cancellation across both straightforward (automatic) and complex (conditional) S-R mappings, providing a neural basis for general cognitive accounts on action control.


Assuntos
Conflito Psicológico , Eletroencefalografia , Inibição Psicológica , Córtex Insular , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Córtex Insular/fisiologia , Córtex Insular/diagnóstico por imagem , Mapeamento Encefálico , Atenção/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem
2.
Cell Rep ; 43(4): 114028, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38581681

RESUMO

Many studies infer the role of neurons by asking what information can be decoded from their activity or by observing the consequences of perturbing their activity. An alternative approach is to consider information flow between neurons. We applied this approach to the parietal reach region (PRR) and the lateral intraparietal area (LIP) in posterior parietal cortex. Two complementary methods imply that across a range of reaching tasks, information flows primarily from PRR to LIP. This indicates that during a coordinated reach task, LIP has minimal influence on PRR and rules out the idea that LIP forms a general purpose spatial processing hub for action and cognition. Instead, we conclude that PRR and LIP operate in parallel to plan arm and eye movements, respectively, with asymmetric interactions that likely support eye-hand coordination. Similar methods can be applied to other areas to infer their functional relationships based on inferred information flow.


Assuntos
Lobo Parietal , Lobo Parietal/fisiologia , Animais , Macaca mulatta , Masculino , Neurônios/fisiologia , Movimentos Oculares/fisiologia , Desempenho Psicomotor/fisiologia , Rede Nervosa/fisiologia
3.
PLoS Comput Biol ; 20(4): e1011951, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598603

RESUMO

Implicit adaptation has been regarded as a rigid process that automatically operates in response to movement errors to keep the sensorimotor system precisely calibrated. This hypothesis has been challenged by recent evidence suggesting flexibility in this learning process. One compelling line of evidence comes from work suggesting that this form of learning is context-dependent, with the rate of learning modulated by error history. Specifically, learning was attenuated in the presence of perturbations exhibiting high variance compared to when the perturbation is fixed. However, these findings are confounded by the fact that the adaptation system corrects for errors of different magnitudes in a non-linear manner, with the adaptive response increasing in a proportional manner to small errors and saturating to large errors. Through simulations, we show that this non-linear motor correction function is sufficient to explain the effect of perturbation variance without referring to an experience-dependent change in error sensitivity. Moreover, by controlling the distribution of errors experienced during training, we provide empirical evidence showing that there is no measurable effect of perturbation variance on implicit adaptation. As such, we argue that the evidence to date remains consistent with the rigidity assumption.


Assuntos
Adaptação Fisiológica , Humanos , Adaptação Fisiológica/fisiologia , Simulação por Computador , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Biologia Computacional , Movimento/fisiologia , Masculino , Adulto , Modelos Neurológicos
4.
Nat Commun ; 15(1): 3357, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637493

RESUMO

Egocentric encoding is a well-known property of brain areas along the dorsal pathway. Different to previous experiments, which typically only demanded egocentric spatial processing during movement preparation, we designed a task where two male rhesus monkeys memorized an on-the-object target position and then planned a reach to this position after the object re-occurred at variable location with potentially different size. We found allocentric (in addition to egocentric) encoding in the dorsal stream reach planning areas, parietal reach region and dorsal premotor cortex, which is invariant with respect to the position, and, remarkably, also the size of the object. The dynamic adjustment from predominantly allocentric encoding during visual memory to predominantly egocentric during reach planning in the same brain areas and often the same neurons, suggests that the prevailing frame of reference is less a question of brain area or processing stream, but more of the cognitive demands.


Assuntos
Córtex Cerebral , Percepção Espacial , Masculino , Animais , Percepção Espacial/fisiologia , Córtex Cerebral/fisiologia , Lobo Parietal/fisiologia , Memória , Cognição , Desempenho Psicomotor/fisiologia
5.
Sci Rep ; 14(1): 9119, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643224

RESUMO

In everyday life, we constantly make decisions about actions to be performed subsequently. Research on motor decision making has provided empirical evidence for an influence of decision uncertainty on movement execution in young adults. Further, decision uncertainty was suggested to be increased in older adults due to limited cognitive resources for the integration of information and the prediction of the decision outcomes. However, the influence of cognitive aging on decision uncertainty during motor decision making and movement execution has not been investigated, yet. Thus, in the current study, we presented young and older adults with a motor decision making task, in which participants had to decide on pointing towards one out of five potential targets under varying cognitive demands. Statistical analyses revealed stronger decreases in correctly deciding upon the pointing target, i.e. task performance, from low to higher cognitive demand in older as compared to young adults. Decision confidence also decreased more strongly in older adults with increasing cognitive demand, however, only when collapsing across correct and incorrect decision trials, but not when considering correct decision trials, only. Further, older adults executed reaching movements with longer reaction times and increased path length, though the latter, again, not when considering correct decision trials, only. Last, reaction time and variability in movement execution were both affected by cognitive demand. The outcomes of this study provide a differentiated picture of the distinct and joint effects of aging and cognitive demand during motor decision making.


Assuntos
Objetivos , Desempenho Psicomotor , Adulto Jovem , Humanos , Idoso , Incerteza , Tempo de Reação , Movimento , Cognição , Tomada de Decisões
6.
Cogn Res Princ Implic ; 9(1): 24, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652184

RESUMO

With the increased sophistication of technology, humans have the possibility to offload a variety of tasks to algorithms. Here, we investigated whether the extent to which people are willing to offload an attentionally demanding task to an algorithm is modulated by the availability of a bonus task and by the knowledge about the algorithm's capacity. Participants performed a multiple object tracking (MOT) task which required them to visually track targets on a screen. Participants could offload an unlimited number of targets to a "computer partner". If participants decided to offload the entire task to the computer, they could instead perform a bonus task which resulted in additional financial gain-however, this gain was conditional on a high performance accuracy in the MOT task. Thus, participants should only offload the entire task if they trusted the computer to perform accurately. We found that participants were significantly more willing to completely offload the task if they were informed beforehand that the computer's accuracy was flawless (Experiment 1 vs. 2). Participants' offloading behavior was not significantly affected by whether the bonus task was incentivized or not (Experiment 2 vs. 3). These results combined with those from our previous study (Wahn et al. in PLoS ONE 18:e0286102, 2023), which did not include a bonus task but was identical otherwise, show that the human willingness to offload an attentionally demanding task to an algorithm is considerably boosted by the availability of a bonus task-even if not incentivized-and by the knowledge about the algorithm's capacity.


Assuntos
Algoritmos , Humanos , Adulto , Masculino , Feminino , Adulto Jovem , Desempenho Psicomotor/fisiologia , Atenção/fisiologia , Cognição/fisiologia
7.
J Sports Sci ; 42(5): 392-403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38574326

RESUMO

When applied over the primary motor cortex (M1), anodal transcranial direct current stimulation (a-tDCS) could enhance the effects of a single motor imagery training (MIt) session on the learning of a sequential finger-tapping task (SFTT). This study aimed to investigate the effect of a-tDCS on the learning of an SFTT during multiple MIt sessions. Two groups of 16 healthy young adults participated in three consecutive MIt sessions over 3 days, followed by a retention test 1 week later. They received active or sham a-tDCS during a MIt session in which they mentally rehearsed an eight-item complex finger sequence with their left hand. Before and after each session, and during the retention test, they physically repeated the sequence as quickly and accurately as possible. Both groups (i) improved their performance during the first two sessions, showing online learning; (ii) stabilised the level they reached during all training sessions, reflecting offline consolidation; and (iii) maintained their performance level one week later, showing retention. However, no significant difference was found between the groups, regardless of the MSL stage. These results emphasise the importance of performing several MIt sessions to maximise performance gains, but they do not support the additional effects of a-tDCS.


Assuntos
Dedos , Aprendizagem , Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Adulto Jovem , Masculino , Córtex Motor/fisiologia , Feminino , Aprendizagem/fisiologia , Dedos/fisiologia , Adulto , Destreza Motora/fisiologia , Imaginação/fisiologia , Desempenho Psicomotor/fisiologia
8.
J Psychiatr Res ; 173: 309-316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569451

RESUMO

OBJECTIVE: Psychomotor retardation is a core clinical component of Major Depressive Disorder responsible for disability and is known as a treatment response marker of biological treatments for depression. Our objective was to describe cognitive and motoric measures changes during a treatment by repetitive Transcranial Magnetic Stimulation (rTMS) within the THETAD-DEP trial for treatment-resistant depression (TRD), and compare those performances at the end of treatment and one month after between responders (>50% improvement on MADRS score), partial responders (25-50%) and non-reponders (no clinically relevant improvement). Our secondary aim was to investigate baseline psychomotor performances associated with non-response and response even partial. METHODS: Fifty-four patients with treatment-resistant unipolar depression and treated by either high frequency 10 Hz rTMS or iTBS for 4 weeks (20 sessions) underwent assessment including French Retardation Rating Scale for Depression (ERD), Verbal Fluency test, and Trail Making Test A. before, just after treatment and one month later. RESULTS: 20 patients were responders (R, 21 partial responders (PR) and 13 non-responders (NR). rTMS treatment improved psychomotor performances in the R and PR groups unlike NR patients whose psychomotor performance was not enhanced by treatment. At baseline, participants, later identified as partial responders, showed significantly higher performances than non-responders. CONCLUSION: Higher cognitivo-motor performances at baseline may be associated with clinical improvement after rTMS treatment. This work highlights the value of objective psychomotor testing for the identification of rTMS responders and partial responders, and thus may be useful for patient selection and protocol individualization such as treatment continuation for early partial responders.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Humanos , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Resistente a Tratamento/terapia , Transtorno Depressivo Resistente a Tratamento/complicações , Fenômenos Magnéticos , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
9.
Nat Commun ; 15(1): 3153, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605030

RESUMO

Although the motor cortex has been found to be modulated by sensory or cognitive sequences, the linkage between multiple movement elements and sequence-related responses is not yet understood. Here, we recorded neuronal activity from the motor cortex with implanted micro-electrode arrays and single electrodes while monkeys performed a double-reach task that was instructed by simultaneously presented memorized cues. We found that there existed a substantial multiplicative component jointly tuned to impending and subsequent reaches during preparation, then the coding mechanism transferred to an additive manner during execution. This multiplicative joint coding, which also spontaneously emerged in recurrent neural networks trained for double reach, enriches neural patterns for sequential movement, and might explain the linear readout of elemental movements.


Assuntos
Macaca , Córtex Motor , Animais , Córtex Motor/fisiologia , Neurônios/fisiologia , Movimento/fisiologia , Sinais (Psicologia) , Desempenho Psicomotor/fisiologia
10.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629799

RESUMO

Goal-directed actions are fundamental to human behavior, whereby inner goals are achieved through mapping action representations to motor outputs. The left premotor cortex (BA6) and the posterior portion of Broca's area (BA44) are two modulatory poles of the action system. However, how these regions support the representation-output mapping within the system is not yet understood. To address this, we conducted a finger-tapping functional magnetic resonance imaging experiment using action categories ranging from specific to general. Our study found distinct neural behaviors in BA44 and BA6 during action category processing and motor execution. During access of action categories, activity in a posterior portion of BA44 (pBA44) decreased linearly as action categories became less specific. Conversely, during motor execution, activity in BA6 increased linearly with less specific categories. These findings highlight the differential roles of pBA44 and BA6 in action processing. We suggest that pBA44 facilitates access to action categories by utilizing motor information from the behavioral context while the premotor cortex integrates motor information to execute the selected action. This finding enhances our understanding of the interplay between prefrontal cortical regions and premotor cortex in mapping action representation to motor execution and, more in general, of the cortical mechanisms underlying human behavior.


Assuntos
Imageamento por Ressonância Magnética , Córtex Motor , Humanos , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal , Mapeamento Encefálico/métodos , Córtex Motor/diagnóstico por imagem , Desempenho Psicomotor
11.
Sci Rep ; 14(1): 8906, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632252

RESUMO

People correct for movement errors when acquiring new motor skills (de novo learning) or adapting well-known movements (motor adaptation). While de novo learning establishes new control policies, adaptation modifies existing ones, and previous work have distinguished behavioral and underlying brain mechanisms for each motor learning type. However, it is still unclear whether learning in each type interferes with the other. In study 1, we use a within-subjects design where participants train with both 30° visuomotor rotation and mirror reversal perturbations, to compare adaptation and de novo learning respectively. We find no perturbation order effects, and find no evidence for differences in learning rates and asymptotes for both perturbations. Explicit instructions also provide an advantage during early learning in both perturbations. However, mirror reversal learning shows larger inter-participant variability and slower movement initiation. Furthermore, we only observe reach aftereffects following rotation training. In study 2, we incorporate the mirror reversal in a browser-based task, to investigate under-studied de novo learning mechanisms like retention and generalization. Learning persists across three or more days, substantially transfers to the untrained hand, and to targets on both sides of the mirror axis. Our results extend insights for distinguishing motor skill acquisition from adapting well-known movements.


Assuntos
Generalização Psicológica , Desempenho Psicomotor , Humanos , Destreza Motora , Movimento , Reversão de Aprendizagem , Adaptação Fisiológica
12.
J Neuroeng Rehabil ; 21(1): 60, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654367

RESUMO

OBJECTIVE: The objective of this study was to evaluate users' driving performances with a Power Wheelchair (PWC) driving simulator in comparison to the same driving task in real conditions with a standard power wheelchair. METHODS: Three driving circuits of progressive difficulty levels (C1, C2, C3) that were elaborated to assess the driving performances with PWC in indoor situations, were used in this study. These circuits have been modeled in a 3D Virtual Environment to replicate the three driving task scenarios in Virtual Reality (VR). Users were asked to complete the three circuits with respect to two testing conditions during three successive sessions, i.e. in VR and on a real circuit (R). During each session, users completed the two conditions. Driving performances were evaluated using the number of collisions and time to complete the circuit. In addition, driving ability by Wheelchair Skill Test (WST) and mental load were assessed in both conditions. Cybersickness, user satisfaction and sense of presence were measured in VR. The conditions R and VR were randomized. RESULTS: Thirty-one participants with neurological disorders and expert wheelchair drivers were included in the study. The driving performances between VR and R conditions were statistically different for the C3 circuit but were not statistically different for the two easiest circuits C1 and C2. The results of the WST was not statistically different in C1, C2 and C3. The mental load was higher in VR than in R condition. The general sense of presence was reported as acceptable (mean value of 4.6 out of 6) for all the participants, and the cybersickness was reported as acceptable (SSQ mean value of 4.25 on the three circuits in VR condition). CONCLUSION: Driving performances were statistically different in the most complicated circuit C3 with an increased number of collisions in VR, but were not statistically different for the two easiest circuits C1 and C2 in R and VR conditions. In addition, there were no significant adverse effects such as cybersickness. The results show the value of the simulator for driving training applications. Still, the mental load was higher in VR than in R condition, thus mitigating the potential for use with people with cognitive disorders. Further studies should be conducted to assess the quality of skill transfer for novice drivers from the simulator to the real world. Trial registration Ethical approval n ∘ 2019-A001306-51 from Comité de Protection des Personnes Sud Mediterranée IV. Trial registered the 19/11/2019 on ClinicalTrials.gov in ID: NCT04171973.


Assuntos
Cadeiras de Rodas , Humanos , Projetos Piloto , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Realidade Virtual , Condução de Veículo/psicologia , Simulação por Computador , Interface Usuário-Computador , Desempenho Psicomotor/fisiologia , Idoso , Adulto Jovem , Doenças do Sistema Nervoso/psicologia
13.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38514180

RESUMO

Deciding on a course of action requires both an accurate estimation of option values and the right amount of effort invested in deliberation to reach sufficient confidence in the final choice. In a previous study, we have provided evidence, across a series of judgment and choice tasks, for a dissociation between the ventromedial prefrontal cortex (vmPFC), which would represent option values, and the dorsomedial prefrontal cortex (dmPFC), which would represent the duration of deliberation. Here, we first replicate this dissociation and extend it to the case of an instrumental learning task, in which 24 human volunteers (13 women) choose between options associated with probabilistic gains and losses. According to fMRI data recorded during decision-making, vmPFC activity reflects the sum of option values generated by a reinforcement learning model and dmPFC activity the deliberation time. To further generalize the role of the dmPFC in mobilizing effort, we then analyze fMRI data recorded in the same participants while they prepare to perform motor and cognitive tasks (squeezing a handgrip or making numerical comparisons) to maximize gains or minimize losses. In both cases, dmPFC activity is associated with the output of an effort regulation model, and not with response time. Taken together, these results strengthen a general theory of behavioral control that implicates the vmPFC in the estimation of option values and the dmPFC in the energization of relevant motor and cognitive processes.


Assuntos
Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Feminino , Masculino , Adulto , Adulto Jovem , Tomada de Decisões/fisiologia , Comportamento de Escolha/fisiologia , Mapeamento Encefálico/métodos , Tempo de Reação/fisiologia , Desempenho Psicomotor/fisiologia , Condicionamento Operante/fisiologia , Julgamento/fisiologia
14.
Neurosci Lett ; 828: 137731, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492881

RESUMO

In healthy subjects, the Error Negativity (Ne) was initially reported on errors and on partial errors, only. Later on, application of the Laplacian transformation to EEG data unmasked a Ne-like wave (Nc) that shares a main generator with the Ne, suggesting that the Nc is just a small Ne. However, the reason why a small Ne would persist on correct responses remains unclear. Now, sometimes, subthreshold EMG activations in the muscles corresponding to correct responses (not strong enough to reach the response threshold) can precede full-blown correct responses. These "partially correct" activities seem to correspond to (force) execution errors, as they evoke a sizeable Ne. Within the frames of the Reward Value and Prediction Model or of the Predicted Response-Outcome model we propose that the action monitoring system evokes a Ne/Nc on correct responses because, even when a correct choice has been made, the accuracy of response (force) execution cannot be fully predicted. If this interpretation is correct, it can be assumed that, once these execution errors have been corrected, the correctness of the (full-blown) correcting response is highly predictable. Consequently, they should evoke a smaller Nc/Ne than "pure" correct responses. We show, that for the response thresholds set in the present experiment, the correcting response of the trials containing a partially correct activation evoke no identifiable Nc at all. Therefore it seems that there usually is an Error Negativity on correct trials because the correctness of response (force) execution cannot be fully predicted.


Assuntos
Eletroencefalografia , Desempenho Psicomotor , Humanos , Tempo de Reação/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Luminosa , Potenciais Evocados/fisiologia
15.
Exp Brain Res ; 242(4): 949-958, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448673

RESUMO

In the current investigation, we modified the high Go, low No-Go Sustained Attention to Response Task (SART). Some researchers argue a commission error, an inappropriate response to a No-Go stimulus, in the SART is due to the participant being inattentive, or perceptually decoupled, during stimulus onset. Response delays in the SART reduce commission errors. A response delay may therefore enable a participant who is initially inattentive to recouple their attention in time to appropriately perceive the stimulus and withhold a response to a No-Go stimulus. However, shortening stimulus display duration in the SART should limit the possibility of the participant identifying the stimulus later, if they are initially not attending the stimulus. A response delay should not reduce commission errors if stimulus duration is kept to the minimum duration enabling stimulus recognition. In two experiments, we shortened stimulus onset to offset duration and added response delays of varying lengths. In both experiments, even when stimulus duration was shortened, response delays notably reduced commission errors if the delay was greater than 250 ms. In addition, using the Signal Detection Theory perspective in which errors of commission in the SART are due to a lenient response bias-trigger happiness, we predicted that response delays would result in a shift to a more conservative response bias in both experiments. These predictions were verified. The errors of commission in the SART may not be a measures of conscious awareness per se, but instead indicative of the level of participant trigger happiness-a lenient response bias.


Assuntos
Felicidade , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Prevalência , Inibição Psicológica
16.
Epilepsy Behav ; 153: 109725, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458121

RESUMO

The epilepsy monitoring unit (EMU) is a complex and dynamic operational environment, where the cognitive and behavioural consequences of medical and environmental changes often go unnoticed. The psychomotor vigilance task (PVT) has been used to detect changes in cognition and behaviour in numerous contexts, including among astronauts on spaceflight missions, pilots, and commercial drivers. Here, we piloted serial point-of-care administration of the PVT in children undergoing invasive monitoring in the EMU. Seven children completed the PVT throughout their hospital admission and their performance was associated with daily seizure counts, interictal epileptiform discharges, number of antiseizure medications (ASMs) administered, and sleep quality metrics. Using mixed-effects models, we found that PVT reaction time and accuracy were adversely affected by greater number of ASMs and interictal epileptiform activity. We show that serial point-of-care PVT is simple and feasible in the EMU and may enable greater understanding of individual patient responses to medical and environmental alterations, inform clinical decision-making, and support quality-improvement and research initiatives.


Assuntos
Epilepsia , Desempenho Psicomotor , Criança , Humanos , Desempenho Psicomotor/fisiologia , Sistemas Automatizados de Assistência Junto ao Leito , Vigília/fisiologia , Tempo de Reação/fisiologia , Epilepsia/diagnóstico
17.
PLoS One ; 19(3): e0300020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547216

RESUMO

When a context change is detected during motor learning, motor memories-internal models for executing movements within some context-may be created or existing motor memories may be activated and modified. Assigning credit to plausible causes of errors can allow for fast retrieval and activation of a motor memory, or a combination of motor memories, when the presence of such causes is detected. Features of the movement-context intrinsic to the movement dynamics, such as posture of the end effector, are often effective cues for detecting context change whereas features extrinsic to the movement dynamics, such as the colour of an object being moved, are often not. These extrinsic cues are typically not relevant to the motor task at hand and can be safely ignored by the motor system. We conducted two experiments testing if extrinsic but movement-goal relevant object-shape cues during an object-transport task can act as viable contextual cues for error assignment to the object, and the creation of new, object-shape-associated motor memories. In the first experiment we find that despite the object-shape cues, errors are primarily attributed to the hand transporting the object. In a second experiment, we find participants can execute differing movements cued by the object shape in a dual adaptation task, but the extent of adaptation is small, suggesting that movement-goal relevant object-shape properties are poor but viable cues for creating context specific motor memories.


Assuntos
Sinais (Psicologia) , Objetivos , Humanos , Movimento/fisiologia , Percepção Visual/fisiologia , Motivação , Desempenho Psicomotor/fisiologia
18.
J Intellect Disabil Res ; 68(6): 610-619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38500391

RESUMO

BACKGROUND: The main objective of this study was to evaluate gait parameters in people with intellectual disability (ID) and without intellectual disability (WID) in two different walking conditions [single task vs. dual task (DT)]. A secondary aim was to evaluate the dual-task cost (DTC) that the DT causes in each group. METHODS: A total of 119 participants joined in this study: 56 ID (30 men) and 63 WID (30 men). The OptoGait system was used to assess gait. In addition, Witty photocells were added to assess gait under the DT condition. RESULTS: Single support time was lower for participants with ID (P < 0.01), while double support time was higher (P < 0.05). All coefficients of variation for gait parameters were higher in participants with ID. Additionally, changes in gait were observed in both groups during the DT condition compared with the single-task condition. These changes were larger for participants with ID in step length, double support time and gait speed (P < 0.001), resulting in a higher DTC in these variables in the ID group (P < 0.01). CONCLUSIONS: Both groups reduced gait performance in the DT condition. However, greater gait variability occurred in the ID group. In addition, DTC was higher for the ID group in all variables analysed. Therefore, people with ID show worse gait performance during a DT than people WID.


Assuntos
Deficiência Intelectual , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Feminino , Adulto , Desempenho Psicomotor/fisiologia , Adulto Jovem , Pessoa de Meia-Idade , Marcha/fisiologia
19.
J Exp Psychol Gen ; 153(5): 1257-1267, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38451699

RESUMO

The now-classic goal-gradient hypothesis posits that organisms increase effort expenditure as a function of their proximity to a goal. Despite nearly a century having passed since its original formulation, goal-gradient-like behavior in human cognitive performance remains poorly understood: Are we more willing to engage in costly cognitive processing when we are near, versus far, from a goal state? Moreover, the computational mechanisms underpinning these potential goal-gradient effects-for example, whether goal proximity affects fidelity of stimulus encoding, response caution, or other identifiable mechanisms governing speed and accuracy-are unclear. Here, in two experiments, we examine the effect of goal proximity, operationalized as progress toward the completion of a rewarded task block, upon task performance in an attentionally demanding oddball task. Supporting the goal-gradient hypothesis, we found that participants responded more quickly, but not less accurately, when rewards were proximal than when they were distal. Critically, this effect was only observed when participants were given information about goal proximity. Using hierarchical drift diffusion modeling, we found that these apparent goal-gradient performance effects were best explained by a collapsing bound model, in which proximity to a goal reduced response caution and increased information processing. Taken together, these results suggest that goal gradients could help explain the oft-observed fluctuations in engagement of cognitively effortful processing, extending the scope of the goal-gradient hypothesis to the domain of cognitive tasks. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Atenção , Recompensa , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Atenção/fisiologia , Objetivos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Função Executiva/fisiologia
20.
Sleep Med ; 117: 107-114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522115

RESUMO

OBJECTIVE: To investigate the effects of combinations of brief naps (a 90- followed by a 30-min nap vs. a 30- followed by a 90-min nap) on sleep inertia, reducing sleepiness and fatigue, and maintaining performance during night hours. METHODS: This randomized, comparative, repeated-measure, cross-over study investigated subjective and cognitive performance in 12 healthy females, evaluated in three experimental nap conditions: 1) from 22:30 to 00:00 and 02:30 to 03:00 (Pre90-NAP group), 2) from 23:30 to 00:00 and 02:30 to 04:00 (Pre30-NAP) group, and 3) no naps (NO-NAP group). Participants' body temperature, psychomotor vigilance task (PVT) and Uchida-Kraepelin test (UKT) scores, and subjective feelings of drowsiness and fatigue were evaluated. Sleep state was determined by an actigraphy monitoring device worn by participants. RESULTS: Regardless of timing, both 90-min naps were associated with sleep inertia, and both 30-min naps with minimal sleep inertia. Reaction times were shorter and fewer errors were committed at 2 h post-nap in the Pre30-NAP and Pre90-NAP groups compared with those at the same time in the NO-NAP group. Adding a 90-min nap to a 30-min nap reduced subjective fatigue and shortened reaction times, and adding a 30-min nap to a 90-min nap was effective in maintaining performance, suggesting a synergistic effect. CONCLUSIONS: Taking two naps during a night work can mitigate sleepiness and fatigue, and maintain performance. A 90- followed by a 30-min nap reduced fatigue and reaction time, and a 30- followed by a 90-min nap maintained cognitive performance in the early morning.


Assuntos
Desempenho Psicomotor , Privação do Sono , Feminino , Humanos , Estudos Cross-Over , Projetos Piloto , Sonolência , Tolerância ao Trabalho Programado , Sono , Vigília , Fadiga , Cognição , Ritmo Circadiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...